Complex projective foliations having sub-exponential growth
نویسندگان
چکیده
منابع مشابه
Foliations on Complex Projective Surfaces
In this text we shall review the classification of foliations on complex projective surfaces according to their Kodaira dimension, following McQuillan’s seminal paper [MQ1] with some complements and variations given by [Br1] and [Br2]. Most of the proofs will be only sketched, and the text should be considered as guidelines to the above works (and related ones), with no exhaustivity nor selfcon...
متن کاملDynamics of Singular Holomorphic Foliations on the Complex Projective Plane
This manuscript is a revised version of my Master’s thesis which was originally written in 1992 and was presented to the Mathematics Department of University of Tehran. My initial goal was to give, in a language accessible to non-experts, highlights of the 1978 influential paper of Il’yashenko on singular holomorphic foliations on CP [I3], providing short, self-contained proofs. Parts of the ex...
متن کاملContext-Free Languages of Sub-exponential Growth
There do not exist context–free languages of intermediate growth. The function γ whose value at each non–negative integer n is the number of words on length n in a fixed formal language L is called the growth function of L. Flajolet [3] asked if there are context–free languages of intermediate growth; that is, such that γ is not bounded above by a polynomial, but lim sup γ(n)/r = 0 for all r > ...
متن کاملProjective varieties invariant by one - dimensional foliations
This work concerns the problem of relating characteristic numbers of onedimensional holomorphic foliations of PC to those of algebraic varieties invariant by them. More precisely: if M is a connected complex manifold, a one-dimensional holomorphic foliation F of M is a morphism Φ : L −→ TM where L is a holomorphic line bundle on M . The singular set of F is the analytic subvariety sing(F) = {p ...
متن کاملOn holomorphic foliations with projective transverse structure
We study codimension one holomorphic foliations on complex projective spaces and compact manifolds under the assumption that the foliation has a projective transverse structure in the complement of some invariant codimension one analytic subset. The basic motivation is the characterization of pull-backs of Riccati foliations on projective spaces. Our techniques apply to give a description of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2001
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(01)80011-2