Complex projective foliations having sub-exponential growth

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foliations on Complex Projective Surfaces

In this text we shall review the classification of foliations on complex projective surfaces according to their Kodaira dimension, following McQuillan’s seminal paper [MQ1] with some complements and variations given by [Br1] and [Br2]. Most of the proofs will be only sketched, and the text should be considered as guidelines to the above works (and related ones), with no exhaustivity nor selfcon...

متن کامل

Dynamics of Singular Holomorphic Foliations on the Complex Projective Plane

This manuscript is a revised version of my Master’s thesis which was originally written in 1992 and was presented to the Mathematics Department of University of Tehran. My initial goal was to give, in a language accessible to non-experts, highlights of the 1978 influential paper of Il’yashenko on singular holomorphic foliations on CP [I3], providing short, self-contained proofs. Parts of the ex...

متن کامل

Context-Free Languages of Sub-exponential Growth

There do not exist context–free languages of intermediate growth. The function γ whose value at each non–negative integer n is the number of words on length n in a fixed formal language L is called the growth function of L. Flajolet [3] asked if there are context–free languages of intermediate growth; that is, such that γ is not bounded above by a polynomial, but lim sup γ(n)/r = 0 for all r > ...

متن کامل

Projective varieties invariant by one - dimensional foliations

This work concerns the problem of relating characteristic numbers of onedimensional holomorphic foliations of PC to those of algebraic varieties invariant by them. More precisely: if M is a connected complex manifold, a one-dimensional holomorphic foliation F of M is a morphism Φ : L −→ TM where L is a holomorphic line bundle on M . The singular set of F is the analytic subvariety sing(F) = {p ...

متن کامل

On holomorphic foliations with projective transverse structure

We study codimension one holomorphic foliations on complex projective spaces and compact manifolds under the assumption that the foliation has a projective transverse structure in the complement of some invariant codimension one analytic subset. The basic motivation is the characterization of pull-backs of Riccati foliations on projective spaces. Our techniques apply to give a description of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2001

ISSN: 0019-3577

DOI: 10.1016/s0019-3577(01)80011-2